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Abstract 

Various versions of the second layer condition and the relationships between them are studied. 
It is proved that a right noetherian ring R satisfies the right second layer condition iff every finitely 
generated tame right R-module is a A-module, iff R is right fully tame bounded, meaning that 
every essential right ideal E/P of a prime factor ring R/P contains a nonzero ideal of R/P 
whenever R/E is tame. @ 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Since it was first introduced, the second layer condition has become one of the 

most important concepts for the study of non-commutative noetherian rings. Roughly 

speaking, it postulates that if 0 + L + A4 -+ N -+ 0 is a non-split exact sequence of 

R-modules, such that L and N are modules over prime factor rings, then N should 

not be torsion if L is torsionfree. Such non-split extensions of tame modules by tame 

modules lead to the notion of links between prime ideals, and these links have been 

the object of intense study, since they constitute a major obstruction to localization. 

More specifically, following Jategaonkar [6], a prime ideal P of a right noetherian 

ring is said to satisfy the right second layer condition if the second layer of the injective 

hull E,(R/P) of the right R-module R/P is tame, that is, if every prime submodule of 

ER(R/P)/LE,(R~,(P) is torsionfree. In [6], another condition was introduced, called the 

right strong second la_ver condition, and in the literature at least three variations of 
one or the other of these conditions can be found, with various names. 
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One of the objectives of this note is to present different formulations of these second 
layer conditions and to clarify as much as possible how they are related to each 
other. Some of this is well-known for (two-sided) noetherian rings, but we restrict 
ourselves to right noetherian rings, where the picture, up till now, has perhaps been less 

clear. 
Certain prime ideals of a right noetherian ring automatically satisfy the right second 

layer condition, for example, every minimal prime does, which was first observed by 
Boyle and Kosler [1], and follows from our Proposition 5.4. Many noetherian rings 
satisfy the second layer condition on both sides, that is, all their prime ideals satisfy 
it. This is the case for enveloping algebras of finite dimensional solvable Lie algebras, 
group rings of polycyclic-by-finite groups (over commutative noetherian coefficient 
rings), as well as noetherian PI-rings. However, noetherian rings exist that do not 
satisfy this condition, enveloping algebras of semisimple Lie algebras being one such 
instance. An important class of right noetherian rings that do satisfy the right second 
layer condition are the right fully bounded ones. Such right FBN rings have been 
characterized by Cauchon [2] as those right noetherian rings R for which every finitely 
generated right R-module A4 is a A-module, that is, R satisfies the descending chain 
condition for annihilators of subsets of M. Now, Shapiro [I l] has proved that a prime 
ideal P of a right noetherian ring R satisfies a variant of the right second layer condition 
if and only if every finitely generated P-tame right R-module M is finitely annihilated, 
that is, the descending chain condition holds for annihilators of submodules of h4. 
Therefore, the question arises, whether the formal resemblance between right FBN rings 
and right noetherian rings satisfying the right second layer condition can be made more 
precise. To show that this is indeed possible constitutes the other main objective of 
this paper. Thus, a right noetherian ring R is shown to satisfy the right second layer 
condition if and only if every finitely generated tame right R-module is a A-module, 
if and only if every prime homomorphic image R of R is right tame bounded, that is, 
any essential right ideal E of R for which R/i? is tame contains a non-zero two-sided 
ideal (Theorem 6.2). 

We hope that this characterization of the second layer condition will make it easier to 
verify the condition in concrete examples. A major drawback of the original definition 
is that it is not easy to check, since generally one does not have a good grip on 
the structure of the injective module Ex(R/P). This presents a formidable obstacle 
when one tries to verify the second layer condition, even for a “nice” extension of a 
ring that satisfies it. Thus, for example, the case of a skew polynomial ring R[x; a] 

where R is a noetherian ring with second layer condition, still remains unsettled in 
general. 

2. Definitions and notations 

All rings considered are associative with unit element 1, modules are unitary. For 
standard terminology the reader is referred to [3, lo]. 
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Let M be a right R-module, and let X and Y be subsets of M and R, respectively. 

Then 

[M(Y) = annihilator of Y in M = {M EM 1 mY = 0}, 

r&X) = annihilator of X in R = {r E R 1 Xr = O}. 

The subscripts will be deleted if there is no danger of ambiguity. A prime ideal P 

of R is associated with the right R-module M if there exists a submodule 0 #N CM 

such that P = r(N’) for all submodules 0 #N’ C N. 

mod-R = category of right R-modules 

Ass(M) = set of associated primes of the R-module M 

Spec(R) = set of all prime ideals of R 

Spec,(R) = {P E Spec(R) 1 R/P is r-torsionfree}, r a hereditary 

torsion theory on mod-R 

annSpec(M) = {P E Spec(R) 1 P = r(N) for some N 5 M} 

N C,,, M = N is an essential submodule of M 

E&M) = E(M) = injective envelope of the right R-module M 

Ep = injective indecomposable direct summand of ER(R/P) 
p(M) = reduced rank of the module M 

dev(Y) = deviation of the partially ordered set 9 

[MI = [MAR = Krull dimension of the right R-module M 

K,(M) = relative Krull dimension of M with respect to the hereditary 

torsion theory r 

Cl.K.dim(R) = classical Krull dimension of the ring R 

If Z is an ideal of the ring R, then 

W’(Z) = {c E R 1 cx E I implies that x E I}, 

‘W(I) = {c E R 1 xc E I implies that x E I}, 

W(z) = %7(z) n V(z). 

A right R-module M is called P-primary if Ass(M) = P; it is called P-prime if 

Ass(M) = P=r(M). A uniform P-primary right R-module U is P-tame, or simply 

tame, if the P-prime submodule e,(P) is torsionfree as a right R/P-module, that is, no 

non-zero element of &(P) is annihilated by an element of V(P); it is called P-wild, 

or simply wild, if k”(P) is g(P)-torsion. A right R-module is tame (wild) if all its 

uniform submodules are tame (wild). A right R-module M is X-tame for a set 3 of 

prime ideals, if it is tame and Ass(M) c X. Note that submodules, essential extensions 

and direct sums of tame modules are tame. It is also easy to see that extensions of 

tame modules by tame modules are tame. 

A right R-module M is called finitely annihilated if there exist elements ml, ml,. . . , 

m, EM such that r(M) = r(ml, . . . ,m,) =nF=,r(mi); it is a A-module if R satisfies the 

descending chain condition for right annihilators of subsets of M. Note that a A-module 

is tame. 
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An ajiliated series of a right R-module M is a sequence of submodules 0 = MO c Ml 
c . . . c M,_l c M,, = M, together with a set of prime ideals {PI,. . . ,P,} called 

afiliated primes such that each Pi is maximal in Ass(M/Mi_1) and MiIMi_1 = 

[M/M, _ , (pi 1. 

Let R be a ring, and let Q, P E Spec(R). Then Q is linked to P (uia A), denoted by 

Q-P, if A is an ideal with QP CA c Q n P, such that Q n P/A is torsionfree as a 

right R/P-module and fully faithful (that is, has no non-zero unfaithful submodules) as 

a left R/Q-module. 

A subset 9” of Spec(R) is said to be right link closed if P E X and Q-P, imply 

that Q E Z. 

3. Strong second layer condition 

In [5, pp. 23 and 241, Jategaonkar introduced the condition (z)I, later calling it the 

right strong second layer condition in his book [6, p. 2201. 

Definition. A prime ideal P of a right noetherian ring R satisfies the right strong second 
layer condition if for every prime ideal Q c P every finitely generated P/Q-primary 

right R/Q-module is unfaithful over R/Q. A set % of prime ideals of R satisfies the 

right strong second layer condition if every P E 3.” does so. The ring R satisfies the 

right strong second layer condition if Spec(R) satisfies this condition. 

Some of the following characterizations of the right strong second layer condition are 

well-known, at least when R is (left and right) noetherian. For example, the equivalence 

of (i) and (iv) can be found in [3, Corollary 11.5, Exercise 1 lK] for the case when 

X = Spec(R). 

Proposition 3.1. The following statements are equivalent for a set X of prime ideals 

of a right noetherian ring R. 
(i) 9” satisfies the right strong second layer condition. 

(ii) If P E X and M is a jinitel_v generated P-primary right R-module, then M’ is 

P-primary for any set I # 0. 
(iii) Ass(M) = Ass(M’) jbr any jnitely generated right R-module M with Ass(M) G 

3 and any set I # 0. 
(iv) annSpec(M)= Ass(M)jbr anyjnitely generuted right R-module M with Ass(M) 

Cf. 

(v) Given any P E X, there does not exist a finitely generated uniform P-primary 
right R-module M such that r(M//,(P))= Q is a prime ideal, Q c P, and 
MQ=O. 

Proof. (i) + (ii): Let P E 3, let M be a finitely generated P-primary right R-module, 

and let Q E Ass(M’). Choose n = (n,)i E I EM’, such that Q = r(nR) = n,, r(niR) = 
r(c,,, niR). Since M is noetherian, N = xlE, niR C M is a finitely generated 
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P-primary module. As P is assumed to satisfy the right strong second layer condi- 

tion, Q = P follows. 

(ii) =+ (iii): Let M be a finitely generated right R-module with Ass(M) = {PI, . . . , P,} 

C 3. Choose submodules I$ GM, such that n,“=, Nj = 0 and each M/Nj is Pi-primary. 

Then M’ q @=,(M/Nj)‘, so if QEAss(M’), then e~Ass((M/Nj)‘) for some j. 

By hypothesis, (MIN,)’ is g-primary, SO Q = Pj E ASS(M). Since ASS(M) C: 

Ass(M’) in any case, the claim follows. 

(iii) + (iv): Let Q E annSpec(M), Q = r(N) for N C_ M. As Q = nnEN r(n), R/Q ~-f 

NN C_ MN, whence Q E Ass(MN ) = Ass(M). 

(iv)=+(v): Let P E r%“. Suppose there exists a finitely generated uniform right R- 

module M with Ass(M) = P, r(M/C,+t(P)) = Q a p rime ideal, Q c P, and MQ = 0. Then 

Q = r(M) E annSpec(M) = Ass(M) = P, a contradiction. 

(v)+(i): Let P E 3, and let M be a finitely generated P/Q-primary right R/Q- 

module for a prime ideal Q c P. Assume that M is faithful over R/Q, that is, Q = Y(MR). 
Since M is noetherian, there exist submodules Ni, i = 1,. . . , n, such that n;=, Ni = 0 

is an u-redundant intersection and each M/N; is uniform. Then M ifeSS @y=, M/N!. 

Since Ass(M/Ni) = P for all i and since r(MIN,) = Q for some i, we may assume 

that M is uniform. Now, r(M/&(P))P C r(M) = Q, and since P g Q, this implies 

r(M/&(P)) C Q. Since Q = r(M) C r(M/e~(p)), it follows that r(M/(;,(P)) = 
Q, contradicting (v). 0 

Part (v) of the preceding result clarifies the connection with the strong second layer 

condition and another version of it that appears in [3, Theorem 11.11 and arises from 

the following formulation of Jategaonkar’s Main Lemma [6, 6.1.31 for noetherian rings. 

Lemma 3.2. Let R be a noetherian ring, and let M be a right R-module with an afi- 
hated series 0 c U c M and corresponding afiliated prime ideals P and Q, such that 

(I G,,,M. Let M’ be a submodule of M, properly containing U, such that the ideal 
A = r(M’) is maximal among annihilators of submodules of M properly containing 

U. Then exactly one of the following two alternatives occurs: 
(i) Q c P and M’Q=O. In this case, M’ and M’/U are faithful torsion RIQ- 

modules. 

(ii) Q-P and Q n P/A is a linking bimodule between Q and P. In this case, if 

U is torsionfree as a right RIP-module then M’lU is torsionfree as a right 
RIQ-module. 

In [3, p.1831 a prime ideal P of a noetherian ring R is said to satisfy the strong 
second layer condition if, given the hypotheses of the preceding lemma, the conclusion 

(i) never occurs. However, a distinction has to be made between this concept and the 

previous one defined above, even for noetherian rings, since [3, Exercise 1 lM] shows 

that a prime ideal P may satisfy the latter right strong second layer condition, but does 

not satisfy the earlier one. Thus we shall introduce the name right strong afiliated 
second layer condition for the latter. It can be characterized as follows. 
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Proposition 3.3 (Goodearl and Warheld [3, Proposition 11.31). The following state- 

ments are equivalent for a prime ideal P of a noetherian ring. 

(i) P satisjies the right strong afJiliated second layer condition. 
(ii) There does not exist a finitely generated untform right R-module M with an 

aJfiliated series 0 c U c M and corresponding afiliated prime ideals P and Q 

such that M/U is uniform, Q c P, and MQ = 0. 

Statement (ii) of the preceding proposition will be used to define the right strong 

affiliated second layer condition for right noetherian rings. 

Definition. A prime ideal P of a right noetherian ring R satisfies the right strong 

aJtiliated second layer condition if there does not exist a finitely generated uniform 

right R-module A4 with an affiliated series 0 c U c M and corresponding affiliated prime 

ideals P and Q such that M/U is uniform, Q c P, and MQ=O. The ring R satisfies 

the right strong a$iiliated second layer condition if every prime ideal of R satisfies 

this condition. 

It is clear from Proposition 3.1 (v) that a prime ideal of a right noetherian ring that 

satisfies the right strong second layer condition also satisfies the right strong affili- 

ated second layer condition. As has been pointed out above, the converse does not 

necessarily hold for a single prime. However, we have the following. 

Proposition 3.4. A right noetherian ring satisfies the right strong second layer con- 

dition tf and only tf it satisfies the right strong afiliated second layer condition. 

Proof. Assume that R satisfies the right strong affiliated second layer condition. Let 

P and Q be prime ideals, Q c P, and assume there exists a finitely generated uniform 

P-primary right R-module M with r(M/tM(P)) = Q and MQ = 0. Passing to the appro- 

priate factor module, we may assume that there exists no proper uniform homomorphic 

image M’ of M with r(M’) = Q that is P/-primary for some prime ideal P’ > Q. Set 

L =/M(P), so r(M/L)= Q. Let L= ny=, Li be an irredundant intersection, such that 

each M/Li is uniform. Then M/L qeSS @YE, M/Li. Clearly, r(M/Li) = Q for some i. Let 

ASS(M/Li) = Pi, SO Pi > Q, and Pi = Q follows since M/Li is a proper homomorphic im- 

age of M. Thus Q =Pi =ASS(M/Li) C Ass(M/L). NOW let X/L be a uniform Q-prime 

submodule of M/L. Then 0 c L CX is an affiliated series of X with corresponding 

affiliated primes P and Q. Since X is uniform and XQ C MQ = 0, this is impossible. 

cl 

4. Restricted strong second layer condition 

The definition of the right strong second layer condition for a prime ideal P postulates 

that for any prime ideal Q c P every finitely generated P-primary R/Q-module M is 

unfaithful over R/Q. If one restricts the class of modules in this definition from 
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P-primary to P-tame, one obtains the condition (*)r of [5, p. 241. In the following 

lemma we present several equivalent formulations of this condition. In its form (iv) 

it was labeled (t) in [3, Exercise 1 lL], whereas in its form (v) it was called the 

right second layer condition by Shapiro [l l] (Shapiro assigns the name right alter- 

nate second layer condition to the condition that the second layer of E,(R/P) be tame, 

a condition that was first called the right second layer condition by Jategaonkar [6, 

p. 1881, and will be so named in this note). We have chosen the name right restricted 

strong second layer condition for the concept under investigation in this section, hop- 

ing that this will not add to the confusion that seems to surround the choice of names 

for these various conditions. 

Definition. A prime ideal P of a right noetherian ring R satisfies the right restricted 
strong second layer condition if for every prime ideal Q c P, every finitely generated 

P-tame right R/Q-module M is unfaithful over R/Q. A set X of prime ideals satisfies 

the right restricted strong second layer condition if every P E 9? satisfies this condi- 

tion. The ring R satisfies the right restricted strong second layer condition if Spec(R) 

does so. 

Proposition 4.1. The following conditions are equivalent for a prime ideal P of a 

right noetherian ring R. 
(i) P satisjes the right restricted strong second layer condition. 

(ii) Zf A4 is a finitely generated P-tame right R-module, then Ass(M’) = P for any 

set I # 0. 
(iii) If M is a finitely generated P-tame right R-module, then M’ is P-tame for 

any set I f0. 
(iv) Whenever M is a jinitely generated submodule of E,(R/P) containing R/P 

such that rR(M) is a prime ideal, then r-R(M) = P. 

(v) Whenever M is a finitely generated submodule of Ep, then r(M) is not equal 
to a prime ideal strictly contained in P. 

(vi) There does not exist a Jinitely generated untform P-tame right R-module M 

such that r(M/&,+t(P)) = Q is a prime ideal, Q c P, and MQ = 0. 

Proof. (i) + (ii): This is proved just like the implication (i) + (ii) of Proposition 3.1. 

(ii) + (iii): Suppose that there exists a P-prime submodule XR of M’ that is S’(P)- 

torsion, so r(x)/P C,,, R/P. If x = (mi)i EI, then r(x) = ni EI r(mi), SO each r(mi)/P is 

essential in RIP, and miR is a P-prime, V(P)-torsion submodule of M. Since M is 

assumed to be P-tame, this is impossible. 

(iii) + (iv): Let M C_ ER(R/P), and assume that r(M) = Q is a prime ideal, Q C P. 

Note that M is P-tame. As R/r(M) = R/n,,,,, r(m) c-t MM, and as MM is P-tame 

by hypothesis, R/Q = R/r(M) is P-tame, so Q = P. 
(iv) + (v): Let M be a finitely generated submodule of Ep, and assume that r(M) = Q 

is a prime ideal, Q s P. Since Ep -+ Es(R/P), the module N =M + (R/P) is a finitely 

generated submodule of ER(R/P) containing R/P, so P = rR(N) = ri@t)fk~(R/P) = Qn 
P=Q. 
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(v) + (vi): Assume that for some prime ideal Q c P there exists a finitely gener- 

ated uniform P-tame right R-module M such that r(M/t~(p)) = Q and MQ = 0. Then 

r(M)= Q, and since M is P-tame uniform, M embeds in Ep. By (v) this is im- 

possible. 

(vi)+(i): Let M be a finitely generated P-tame right R-module, and assume that 

r(M) = Q for some prime ideal Q c P. Since M is noetherian, there exist finitely 

many submodules N, CM such that each M/Nj is uniform and n:=, Ni = 0 is an ir- 

redundant intersection. Then M embeds as an essential submodule in @, M/‘Ni, so 

each M/‘Ni is P-tame. NOW Q=r(M)= nf=, r(M/Ni), SO Q=r(M/Ni) for some i. 
Thus, it may be assumed that M is uniform. Clearly Q= r(M) C r(M/t~(p)), and 

since r(M/e,(P))P C Q, yet Q c P, it follows that r(M//,~(p)) C Q also, showing that 

r(M/Ic~(p)) = Q, which contradicts (vi). 0 

In some sense, the following result is a continuation of the above list of charac- 

terizations of the right restricted strong second layer condition. However, while the 

preceding descriptions of this condition are perhaps somewhat superficial, the theorem 

below goes deeper and presents the right restricted strong second layer condition as a 

form of weak fully boundedness. For this, we introduce the following concept. 

Definition. Let R be a right noetherian ring, and let 2” be a set of prime ideals. The 

ring R is called right .?t^- tame bounded if r(R/E) # 0 for every essential right ideal E 

such that R/E is Z-tame. If every prime homomorphic image of R is right %-tame 

bounded, then R is called right fully T-tame bounded. A right (fully) Spec(R)-tame 

bounded ring is called right (fullv) tame bounded. 

Theorem 4.2. The following statements are equivalent for a set $ of prime ideals of 

the right noetherian ring R. 
(i) ?? satisfies the right restricted strong second layer condition. 

(ii) For any f-tame finitely generated right R-module M and any set I # 8 the 

module M’ is Ass(M)-tame. 
(iii) Any finitely generated %-tame right R-module is a A-module. 
(iv) Any finitely generated Z-tame right R-module is finitely annihilated 

(v) Given a hereditary torsion theory T on mod-R with 3 C Spec,(R), then K,(M) = 
n,(R/r(M)) for every finitely generated J-tame right R-module M. 

(vi) R is right fully T-tame bounded, 

(vii) Every factor ring of R is right T-tame bounded. 

Proof. (i)+ (ii): Let M be a finitely generated Z-tame right R-module, let 

Ass(M) = {PI,. . , P,} C 3. There exist submodules Ni & M such that Ass(M/Ni) = Pi 
and M embeds as an essential submodule in @=, M/‘Ni. Since essential extensions and 

submodules of tame modules are tame, each M/Ni is Pi-tame, so (M/Ni)’ is Pi-tame by 

Lemma 4.l(iii). Consequently, @y=,(M/Ni)’ is Ass(M)-tame, As M’ embeds in the 

latter module, the claim follows. 
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(ii) + (iii): Let M be a finitely generated S-tame right R-module with Ass(M) = 

{PI,. . . , P,} C 2”. Again, choose submodules Ni, i = 1,. . . ,n, such that Ass(M/Ni) = P; 

and M wess @yz, MIN;. Note that each M/Ni is P-tame. Since finite direct sums 

and submodules of A-modules are A-modules, we may thus assume that M is P-tame 

with PE 3. Now let S#0 be a subset of M. Since R/r(S) ~-i MS, R/r(S) is P- 

tame, whence L/r(S) = /R,&P) C,,, R/r(S). Now let si ES. If Al = L n r(s1) = r(S), 

it follows that r(s1) = r(S), and it is done. Otherwise there exists an element s? E S 

such that Ai g r(sz). Set A2 = L rl r(sI) n r(s2) c Al. If A2 = r(S), it is done, oth- 

erwise continue in this fashion to obtain a strictly descending chain of right ide- 

als Al > A2 > . . . > Ai > Ai+l > . . . 2 r(S), where A; = L n r(.YI,s2,. . . ,s). Note that 

Ai/Ai+l=Ai/Ai n r(Si+l) z si+lAi and si+lAiPCsi+lLPCsi+lr(S)=O, SO si+lAiC 

TV. Since M is P-tame, it follows that PR,P(Ai/Ai+l)=PR/P(Si+lAi)>O whenever 

Ai > Ai+,. Since R is right noetherian, pRp(L/r(S)) <co, so by the additivity of the 

reduced rank, the chain of the Ai’S can have at most pRp(L/r(S)) proper inclusions. 

Thus A, = r(S) for some i, whence r(S) = r(q ,s2,. . . ,si). 

(iii) =+ (iv): This is trivial. 

(iv)+(v): By [4, Corollary 1.61, K,(M) 5 ic,(R/r(M)) for any finitely generated 

right R-module M. Since M is assumed to be finitely annihilated, R/r(M) L) M” for 

some integer n > 1, so the reverse inequality follows as well. 

(v) 3 (vi): Let P be a prime ideal and let E/P be an essential right ideal of R/P such 

that R/E is X-tame. Assume that rc,(R/P) = -1, that is, R/P is r-torsion, whence R/E is 

r-torsion. Let Q E Ass(R/E). Then Q E 37 C: Spec,(R), making R/Q r-torsionfree. Since 

R/E is Z-tame, some non-zero submodule N of R/E is isomorphic to a uniform right 

ideal of R/Q. Since N is z-torsion, this leads to a contradiction. Thus k-,(R/P)> - 1. 

Since E/P contains a regular element of R/P by Goldie’s Theorem, it follows that 

k-,(R/r(RIE)) = K,(R/E) < K,(R/P), hence r(R/E) > P. 

(vi)=+(i): Let P E 3, let M be a finitely generated submodule of Ep with prime 

annihilator Q, and suppose that Q c P. Obviously, it may be assumed that M is cyclic, 

M = mR. Since R/r(m) = mR C Ep is P-tame, it follows from (vi) that r(m)/Q is 

not essential in R/Q, so ER(R/r(m)) c-f ER(R/Q), so Ass(M)= Q. Since Ass(M)= 

Ass(Ep) = P, this leads to a contradiction. 

(iv) + (vii): It is obviously sufficient to establish this for R. Let E be an essential 

right ideal of R such that R/E is X-tame. Note that the right annihilator of each coset 

r + E is also an essential right ideal. Since r(R/E) is a finite intersection of these by 

hypothesis, it follows that r(RIE) > 0. 

Finally, the implication (vii) + (vi) is trivial. 0 

Note that Shapiro [ 11, Proposition 1.21 proved that a prime ideal P satisfies the right 

restricted strong second layer condition if and only if every finitely generated P-tame 

right R-module M is finitely annihilated. Our proof that A4 is even a A-module is a 

sharpening of his argument, made possible by first characterizing the condition as in 

part (ii) of the preceding result. 
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5. The second layer condition 

Before we define the second layer condition, we recall Jategaonkar’s original Main 

Lemma [6, 6.1.31. 

Lemma 5.1. Let M be a P-tame right module over a right noetherian ring R. Set 

A = r(M), and let L = CM(P). Assume that for any submodule N CM either N &L 
or r(N) =A. Assume further that the module M/L is untform and is annihilated 

by its associated prime, say Q. Then one of the following two exclusive assertions 

holds: 

(i) The desirable case: Q-P via A. In this case, tf the elements of %?(Q) 
are non-zero-divisors on the left R-module Q n P/A then M/L is Q-tame. In 

particular, this holds tf R is a noetherian ring. 
(ii) The undesirable case: A = Q c P. In this case, MjL is a wild module, and both 

M and M/L are faithful and torsion as right modules over R/Q. 

Definition. A prime ideal P of the right noetherian ring R satisfies the right affiliated 

second layer condition if, in the setup of Lemma 5.1, the undesirable case (ii) never 

occurs. 

This definition is motivated by the following Iemma, which should be compared to 

the corresponding result [3, Proposition 11.3(b)] for noetherian rings. 

Lemma 5.2. The following statements are equivalent for a prime ideal of the right 

noetherian ring R. 
(i) P satisjies the right aJ3liated second layer condition. 

(ii) There does not exist a finitely generated P-tame uniform right R-module M 
with an afiliated series 0 c L c M and corresponding afJiliated prime ideals P 
and Q such that M/L is t&form, Q c P, and MQ = 0. 

Proof. (i)+(ii): Suppose that there exists a finitely generated P-tame right R-module 

M as described in (ii). Replacing M, if needed, by a submodule M’ $Z L whose right 

annihilator is maximal among right annihilators of submodules that are not contained 

in L, it may be assumed that r(N) = r(M) for all submodules N $Z L. Thus M satisfies 

the setup of Lemma 5.1, and the undesirable case occurs. This, however, cannot happen 

if P is assumed to satisfy the right affiliated second layer condition. 

(ii)+(i): (see [3, Proposition 11.31). Assume that there exists a P-tame right R- 
module M satisfying the hypotheses of Lemma 5.1, such that the undesirable case 

occurs. Note that L = /M(P) s,,, M, and also note that we may replace M by mR for 

some m E M \L, so we may assume that M is finitely generated. Now E(M) = @b, Ei 

for injective indecomposable right R-modules Et (in fact, as M is P-tame, Et N Ep for 

all i). For each i, set L; = e,(P), Ki = k’,(Q), so that L’= @jr=, Li =/E(M)(P) and 

K’= @;=, Kj=e E(M)(Q). Set M’ = M + L’, and observe that M’Q = MQ + L’Q C 0 + 
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L’P = 0, so M’ C K’. Since 

M/L’ = M + L//L’ N M/M n L’ = M/M n f E(M)(P) = M/PM(P) = M/L, 

M//L’ is uniform, and since Ml/L’ C K’/Lr 2i @=, KilLi, M’IL’ embeds in KilLi for 

some i, say Ml/L’ Y MilLi C KilLi. NOW Mi is a P-tame uniform right R-module with an 

affiliated series 0 c Li cM~, affiliated primes and P and Q such that Mt/Lt is uniform, 

Q c P, and MiQ = 0. As at the beginning of this proof, it may be assumed that Mi is 

finitely generated, and this contradicts (ii). 0 

In [6, p. 1881, Jategaonkar introduced a condition for a prime ideal P of a right 

noetherian ring R that was designed to rule out the occurrence of the undesirable 

case of Lemma 5.1 for a P-tame right R-module M. The condition postulates that the 

second layer of M, that is, the module M/~M(P) be tame, hence the name second layer 
condition. 

Lemma 5.3. The following statements are equivalent for a prime ideal P of a right 
noetherian ring R. 

(i) The second layer of any P-tame right R-module is tame. 

(ii) The second layver of any untform P-tame right R-module is tame. 
(iii) The second layer of EP is tame. 
(iv) The second layer of E,(R/P) is tame. 

Proof. The implication (i) + (ii) is trivial, and so is (ii) =$ (iii), since Ep is uniform 

and P-tame. 

(iii) rj (iv): Since ER(R/P) N EF for some integer n > 0, it follows that GE~(R/~J(P) N 

(f&(P)>“, SO ER(R/P)/fE,,(R,/P)(P) 2 (RP/~E~(P))“, whence the claim, since direct sums 

of tame modules are tame. 

(iv) + (i): Since a P-tame right R-module M embeds in a direct sum of copies of 

E,(R/P), the second layer of M embeds in a direct sum of copies of the second layer 

of ER(R/P). 0 

Definition. A prime ideal P of a right noetherian ring R satisfies the right second layer 
condition if the second layer of ER(R/P) is tame. A set F of prime ideals satisfies the 

right second layer condition if every P E 2” satisfies this condition. The ring R satisfies 

the right second layer condition if Spec(R) satisfies it. 

Proposition 5.4. Consider the following statements for a prime ideal P of a right 

noetherian ring R. 
(sslc) P satisjes the right strong second layer condition. 

(rsslc) P satisjies the right restricted strong second layer condition. 
(sic) P satis$es the right second layer condition. 

(aslc) P satisjes the right ajfiliated second laver condition. 
(saslc) P satisjies the right strong afiliated second layer condition. 
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Then 
(i) (sslc) * (rsslc) =+ (sic) * (aslc). 

(ii) (aslc) + (sic), if R is noetherian. 

(iii) (sic) + (rsslc) in yened, even when R is noetheviun. 
(iv) (sslc) * (saslc) * (aslc). 

Proof. (i ) The first implication follows from the definition of the strong second layer 

condition and that of its version restricted to tame modules. The second implication was 

first observed by Kosler [7, Lemma 2.51. Assume the right restricted strong second layer 

condition for P, set L = c‘&,(P), let A4 = A4 + L/L be a finitely generated submodule 

of Ep/L, and let ?? be a subset of M. Then S = {s ( s + L E ??} is a subset of the 

finitely generated P-tame right R-module M, which is a d-module by Theorem 4.2. 

Consequently, r(S) = n;=, I, s, E S. Let Y E n:=, Y(S~ + L). Then SirP = 0 for all i, 

so SrP = 0, so Sr CL, hence r E r(S). This proves that fly=, r(si + L) C r(S), and since 

the reverse inclusion is trivial, M is therefore a d-module, hence tame. Consequently, 

the second layer of Ep is tame. 

For the last implication, assume that there exists a finitely generated P-tame uniform 

right R-module M with an affiliated series 0 c L c A4 and corresponding affiliated prime 

ideals P and Q such that M/L is uniform, Q c P, and MQ = 0. By Lemma 5.1, this is 

an incidence of the undesirable case, so MjL is wild. However, E(M) II Ep, so 

M/L=M/t,(P)=M/M n tEp(p) 'v M + ~E~(p)/f~~(p)CEP/f~~(p). 

Since the second layer of Ep is assumed to be tame, this gives a contradiction. 

(ii) Assume that P satisfies the right affiliated second layer condition. Set L = (E,,(P), 

and let U/L be a uniform submodule of Ep/L. Among the submodules of U that are not 

contained in L, choose one with maximal right annihilator, say M. Then A4 satisfies the 

hypotheses of Lemma 5.1. The hypothesis for P means that the desirable case occurs, 

and since R is assumed to be noetherian, this means that M/L is tame. As M/L &U/L, 

U/L is also tame. Thus, the second layer of Ep is tame. 

(iii) It has already been noted above that the prime ideal P of the noetherian ring T in 

[3, Exercise 1 lM] satisfies the right strong affiliated second layer condition, hence also 

the right affiliated second layer condition, and hence the right second layer condition 

by (ii). But P does not satisfy the right restricted strong second layer condition. 

(iv) Apply Proposition 3.1(v), Proposition 3.3 and Lemma 5.2. q 

It is still an open question if the right affiliated second layer condition for a prime 

ideal P implies the right second layer condition for P when the ring R is merely 

right noetherian, in fact. it is not known if in this case the ring can satisfy the right 

affiliated second layer condition and fail to satisfy the right second layer condition. In 

contrast, it is shown below that while a prime ideal of a noetherian ring may satisfy 

the right second layer condition but fail to satisfy the right restricted strong second 

layer condition, a right link closed set of prime ideals of a right noetherian ring R that 

satisfies the right second layer condition also satisfies the right restricted strong second 
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layer condition. Since Spec(R) is trivially right link closed, the two conditions are thus 

equivalent when imposed on the ring as a whole. 

Definition. Let X be a set of prime ideals, and let M be a right R-module. A sequence 

of submodules 

O=NOCN1 C “’ CNiCNj+l C “’ CNk=M 

is called an X-tame prime factor series of M if each of the factors Ni/Ni_i is tame 

and 9-prime for some fi E X. If X = Spec(R), then such a series is simply called a 

tame prime factor series of M. 

Proposition 5.5. The following are equivalent for a right link closed set X of prime 

ideals of the right noetherian ring R. 

(i) X satisjes the right restricted strong second layer condition. 
(ii) X satisfies the right second layer condition. 

(iii) Every finitely generated X-tame right R-module has an X-tame prime factor 
series. 

Proof. It follows from Proposition 5.4 (i) that (i) implies (ii). 

(ii) + (iii): This is a slightly stronger version of [6, Lemma 7.1.21. See also [7, 

Proposition 2.41. Let M be a finitely generated X-tame right R-module, and assume 

that M embeds in a module N that has an X-tame prime factor series {Ni}. It is easy 

to see that the distinct terms of the sequence {M n Ni} form an X-tame prime factor 

series of M. Now, proceed by noetherian induction, assuming that all X-tame proper 

homomorphic images of M have an X-tame prime factor series. If M is not uniform, 

then M embeds in a finite direct sum of X-tame proper homomorphic images MIN, of 

M. Each of these has an X-tame prime factor series by the inductive hypothesis, so 

their direct sum has such a series, so M has one by the remark above. Thus, let M 

be uniform, let Ass(M) = P E X, set L = [M(P), and observe that M/L embeds in the 

second layer of ER(R/P). Since P satisfies the right second layer condition, M/L is thus 

tame, and Jategaonkar’s Main Lemma [6, 6.1.31 shows that M/L is in fact X-tame. By 

induction, M/L has an X-tame prime factor series, which together with L yields such 

a series for M. 

(iii) + (i): (See [7, Proposition 2.61) Let P E X, and let M G Ep be finitely generated 

with prime annihilator r(M) = Q 2 P. We have to show that Q=P. Let 0 = MO c 
. . Mi c . . . c Mk = M, be an X-tame prime factor series of M with fi = r(Mi/Mi_1) 

= ASS(Mi/Mi_ 1). Since Pi > Q for all i, and since PkPk-1 . . PzP1 C r(M) = Q, Pi = Q 
for some i. Then Q = r(M) C r(Mi) C: r(Mi/‘Mi_I ) = P; = Q, whence r(Mi) = Pi = Q. 
Assume that i > 1. Since M is uniform, Mi- 1 c,,, Mi as R/Pi-modules, which contradicts 

the fact that Mi/Mi_1 is V(Pi)-torsionfree. Thus, Q = PI = P. 0 

Since Spec(R) is trivially right link closed, we have the following. 
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Corollary 5.6. A right noetherian ring satisjies the right restricted strong second layer 

condition if and only if it satisfies the right second layer condition. 

6. Relative fully boundedness 

Right fully bounded right noetherian rings have been described in many ways. The 

most important characterization has been achieved by Cauchon [2, Theo&me III 61, 

who proved that a right noetherian ring R is right fully bounded if and only if every 

finitely generated right R-module is a A-module. Perhaps less well-known is the follow- 

ing characterization, which can easily be derived from [9, Satz 3.21: a right noetherian 

ring R is right fully bounded if and only if ]MJ = Cl.K.dim(R/r(M)) for every finitely 

generated right R-module M. Since, as a consequence of Theorem 4.2 and Proposi- 

tion 5.5, a right noetherian ring R satisfies the right second layer condition iff it is right 

fully tame bounded iff every finitely generated tame right R-module is a A-module, it 

is natural to ask whether a characterization similar to the one above can also be ob- 

tained. This is indeed possible, as we proceed to show. However, a dimension other 

than the Km11 dimension has to be used, since, for example, the first Weyl algebra 

Ai satisfies the right second layer condition, is tame as a right module over itself, 

yet (A lI= 1 > 0 = Cl.K.dim(Ai ) = Cl.K.dim(A r /r(Ai )). Now, [S] Kosler, introduced the 

following concept for a module M that he named the classical Krull dimension of 

M denoted by Cldim(M). We prefer the name tame dimension and will denote it by 

y(M), since the term classical Krull dimension suggests a very close relationship in 

general with the classical Krull dimension defined for rings. While such a relationship 

does indeed exist, it seems to be restricted to rings with the second layer condition. 

Definition. Let R be a right noetherian ring. For a right R-module M set 

T(M) = {T 1 T CM, M/T is tame }. 

The ordinal y(M) = dev(T(M)) is called the tame dimension of M. Thus y(M) = - 1 

if no homomorphic image of M is tame and y(M) = c( for an ordinal a> - 1 if 

y(M) f CI and, given any infinite descending chain M = TO > Tl > . s > Ti > Ti+l > . . 

with r, E T(M), then y( Ti/Ti+l) <CI for all but finitely many indices i. 

It is obvious that y(M) is defined for any module M with Krull dimension, and that 

y(M) 5 /Ml. Note that if R is a right noetherian right fully bounded ring then 1’ is 

just the Krull dimension, since in this case every right R-module is tame. In general, 

one has that max{lQV),~(M/N)} < 1;(M) for a submodule N CM [S, Proposition 2.33. 

Whether the tame dimension is exact, that is, whether the above inequality can be 

sharpened to an equality in general, is an open question. Kosler [8, Theorem 2.41 

establishes this, provided R satisfies the right second layer condition, and the proof 

is surprisingly difficult. The name classical Krull dimension for y was motivated by 
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the fact [8, Theorem 2.91 that y(R~)=Cl.K.dim(R) for a right noetherian ring R that 

satisfies the right second layer condition. 

The following is a sharpening of [8, Proposition 2.71. 

Lemma 6.1. Let E be un essential right ideal of the right noetherian prime ring R. 

If RIE is tame then ](R/E) <II( 

Proof. Set Eo = R, El = E, and assume that for k 2 1 essential right ideals Ei, 1 5 i <_ 

k have been found such that Ei_1 3 Ei, R/‘Ei is tame and 1’(Ei_1/Ei) 2 b= y(R/E). 

Let c E Ek be a regular element, and choose a submodule Ek+i/cEk 2 &/cEk that is 

maximal with respect to (CR/c&) @ (&+i/c&) C,,, &/c&. Then 

Since R/Ek is tame, its essential extension Ek/Ek+I is tame. Since extensions of tame 

modules by tame modules are tame, R/E kfl iS tame. Note that y(&/Ek+l) > y(R/&) > 

l’(Ek-,/Ek) > p. Since c2R C cEk C Ek+-1. Ek+l is an essential right ideal. Thus, there 

exists an infinite descending chain R > El > . . . > Ei > Ei+l > . ., such that each R/‘Ei 

is tame and y(Ei/Ei+I ) 2 b for all i. Consequently, I > fl= y(R/E). 0 

The foregoing now allows to characterize the right second layer condition for a 

right noetherian ring R by the property that y(M) = Cl.K.dim(R/r(M)) for any finitely 

generated tame right R-module M. Most of the statements of the following result have 

already been proved above. In view of Theorem 4.2 and Proposition 5.5, the list could 

even be longer, but we have chosen to include only those statements that emphasize 

the formal similarity between fully boundedness and the second layer condition. 

Theorem 6.2. The following statements are equivalent for a right noetherian ring R. 

(i) 
(ii) 

(iii) 

(iv) 

(v) 

R satisjes the right second layer condition. 

Every finitely generated tame right R-module is a A-module. 

IMI = IRIr(M)I f R or every finitely generated tame right R-module M. 

R is right fully tame bounded. 
y(M) = Cl.K.dim(R/r(M)) for every finitely generated tame right R-module 

M. 

Proof. The equivalence of statements (i)-(iv) follows from Theorem 4.2 and Proposi- 

tion 5.5. For (iii), note that IMI = n,(M), z the torsion theory where all non-zero right 

R-modules are torsionfree, so that Spec,(R) = Spec(R). 

(i) + (v): y(M) = y(R/r(M)), by [8, Corollary 2.51, and y(R/r(M)) = Cl.K.dim 

(R/r(M)), by [8, Theorem 2.91, 

(v) 3 (iv): Let P be a prime ideal, and let E/P be an essential right ideal of R/P, 
such that R/E is tame. Note that R/P is also tame. Applying (v) and Lemma 6.1 gives 

Cl.K.dim(R/r(R/E)) = y(R/E)<y(R/P) = Cl.K.dim(R/P), 

so that r(R/E) > P. 0 
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Naturally, the question arises whether the right strong second layer condition can 

be characterized in a similar way. Obviously, the class of finitely generated tame right 

R-modules of the above characterizations would have to be replaced by a larger class 

of modules. This appears to be a difficult problem, particularly in view of the fact 

that to date no example is known of a noetherian ring that satisfies the second layer 

condition, but does not satisfy the strong second layer condition. So far, we only have 

the following partial result in this direction. 

Proposition 6.3. The following statements are equivalent for a right noetherian 

ring R. 
(i) R satisfies the right strong second laJ?er condition 

(ii) Given any prime ideal P of R, every essential right ideal EIP of' RIP satisfying 

P $ Ass(R/E) contains a nonzero two-sided ideal of RIP. 

Proof. (i) + (ii): Let P be a prime ideal, let E/P be an essential right ideal of R/P, and 

assume that P $ Ass(R/E) = {PI,. . . ,P,,}. There exist right ideals Ei, i = 1,. . . ,n, such 

that ASS(R/Ei) =fi and E = nr=, Ei. Since each fl is assumed to satisfy the right 

strong second layer condition, r(R/E,) > P for each i, whence r(R/E) = fir=, r(R/Ei) > P. 
(ii) + (i): Let Q c P be prime ideals, and let M = cl= l miR be a finitely generated 

right R/Q-module with Ass(A4~) = P. We have to show that r,&M) = nl=, r(miR) > Q, 
so we may reduce to the case where M is cyclic, A4 = mR. Obviously, Q $4 Ass(R/r(m)) 
= P, so r(m)/Q C,,, R/Q, and the claim follows from (ii). 0 
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